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Abstract
Set based analysis is an approach to compile-time program analysis that is based on a simple
approximation: all dependencies between variables are ignored. In effect, program variables
are treated as sets of values. Thus far, set based analysis techniques have focussed on data-
constructor languages. The main reason for this is algorithmic: the equality for data-constructor
values is structural (that is, two values f(vl,... , v,,) and f'(vl,... , v,') are equal if and only if
f and f' are identical constructors and vi = vý, i = 1 ..n). This has important implications for
how sets of such values can be represented during the computation of a set based analysis.

In contrast, the equality theory of arithmetic is much richer. Two terms with very different
structure can be equal. Correspondingly, the manipulation and representation of sets of arithmetic
values is significantly more complex. In this paper we extend the ideas of set based analysis to
arithmetic expression in such a way that the analysis yields descriptions of how arithmetic values
are computed. Importantly, this extended analysis yields useful information about the arithmetic
components of a program while maintaining the efficiency of the basic set constraint approach.
We show how this information can be exploited during compilation with two examples involving
array bounds elimination. While this work is carried out in the context of the ML, the techniques
developed appear to be applicable to other languages.



1 Introduction

Set based analysis [5, 7, 81 is an approach to compile-time program analysis that is based on a
simple notion of approximation: all dependencies between variables are ignored. This notion is
formalized by treating program variables as denoting sets of values instead of individual values.
For example, if at some point in a program, the environments fx[- 1, y'-*2] and [xi--.3, y*-.4] can
be encountered, then the set based analysis of the program will introduce set variables X and Y
to represent the respective values of z and y at the given point, and X" will contain both 1 and
3, and Y will contain 2 and 4. In effect, the x-y dependency that "x is 1 when y is 2" and "x
is 3 when y is 4" are ignored; instead only the sets of values for x and y are retained. Call the
approximation that arises from this interpretation the program's set based approximation.

Computationally, set based analysis proceeds by extracting set constraints from a progrhm
such that the least solution of the constraints corresponds exactly to the program's set based
approximation. These constraints are then input to a solver that computes an explicit representa-
tion of the least solution of the constraints (the constraint solving process is the main algorithmic
component of the analysis).

To date, set based analysis techniques have focussed on data-constructor languages. The
main reason for this is that two values f(va,... , v, ) and f'(tj. V') are equal if and only if
f and f' are identical constructors and vi = v', i = l..n. This has important implications for
the constraint solving process. In particular, it means that the least solution of the constraints
can be incrementally built up in a form such that at any time, the structure of the partial solution
constructed thus far is explicit, and questions about membership and emptiness can be directly
answered.

However, when set based analysis is extended to arithmetic, a problem arises: the equality
theory of arithmetic is much richer than the structure equality of data-constructors. Two terms
with very different structure can be equal (for example, 3 and (42 - 48) + 9 represent the same
value). The essential problem is: how can we explicitly represent and incrementally build up
solutions of constraints involving arithmetic?

One approach to the arithmetic problem is to employ an abstract interpretation style ap-
proximation of the arithmetic component of the language. That is, we could use set constraint
techniques to reason about the data-constructor component of a program, and abstract interpre-
tation techniques to reason about its arithmetic components. (With similar motivations, a hybrid
combination of set constraints and abstract interpretation is developed for logic programs in [9].)

Such an approach has two disadvantages. First, we would like to avoid increasing the
complexity of the algorithm beyond the complexity of the core set constraint algorithm (for
analysis of ML, the complexity is 0(n 3) where n is the size of the input program; in practice,
it can be engineered to be nearly linear). This means that we have to place severe limits on
the complexity of the abstract domain, with a resulting loss of information. Second, adding
an abstract interpretation mechanism would involve adding extra machinery to the algorithm,
particularly if the techniques of narrowing and widening [3] are employed.



In this paper we develop an alternative approach that effectively computes a representation
of how a value is obtained in terms of the basic arithmetic operations. In section 2 we describe

the basic extensions of set based analysis needed to compute descriptions of arithmetic values.

In section 3 we describe an important extension of the basic approach that significantly increases

the accuracy of the analysis. In section 4 we discuss some example programs and provide some

preliminary data on how the information obtained from the analysis can be used to improve

program performance. Finally, in section 5 we outline some future directions.

We conclude with a brief discussion of related work. This paper is heavily dependent on
a companion paper [61, which describes the set based analysis of a call-by-value functional
language with data-constructors, references, arrays, exceptions and callcc. Hence there are close

connections with this work and work related to set based analysis (for example, [ 1, 11, 12, 14,

15]). There has been little work on the analysis of arithmetic in languages with higher-order
functions, side-effects and continuations. However, there has been much work in the general

area of. analysis of programs that contain arithmetic. Some of these works focus on obtaining

accurate information about complex relationships between program variables. For example
[4] and [101 on obtaining information about linear relationships between variables. Another

example is array data dependency analysis, which is a local analysis directed towards detecting
loop level parallelism in numeric programs. At the other extreme, type analysis has been used to

inexpensively obtain very simple information about arithmetic expressions. Another important
classification is range analysis, based on abstract interpretation (3]. Range analysis typically
ignores dependencies between variable values, but is somewhat more accurate than type analysis
approaches. The motivation for this kind of analysis is to determine when arithmetic tests (such

as those for array bounds checking) can be safely ignored. Our work is most closely related to
range analysis, and our motivations are similar.

2 Arithmetic Expressions

Consider a simple call-by-value functional language whose terms e are defined by

e ::-" X I ¢(l..e)I \x.e I el e2 I case(el, (a,.,x): e2, Y =:* e3) I fix x.e

I i el arithop e2 I if x relop y then el else e2

where x, x 1,... , X,, y range over program variables, c ranges over a given set of (varying arity,
"first-order") constants, i ranges over integers', arithop ranges over arithmetic operations such

as +, -, *,/, and relop ranges over comparison operations such as =, < >, <_, <, etc. It is
convenient to adopt the usual convention that each bound variable is distinct. The operator
fix serves to express recursion2 . This language is an extension of the language used in [6],
and the operational semantics we shall use is an extension of the one given there. Specifically,
environments are finite mappings from program variables to values. Values are either (i) integers,
(ii) of the form c( Vi,. . , v,,) where the vi are values, or (iii) closures of the form (E, Ax.e) where

'Th restriction to integer is for convenience;the implementation, described lawer in the paper, deals with floating point numbers
as rwell as a variety of integer data types.

21n fiz x.e. the expression e shall typically be an abstraction.
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E is an envirogment. We briefly outline evaluation of expressions. Evaluation of variables,
abstractions, applications and fix expressions proceeds in the usual way. Evaluation of a case
statemenitcase(e 1 , c(xj,. . . ,x,•) #: e2, y =:> e3) proceedsby firstevaluatinge 1 . Iftheresult has
the form c(vl ,... , v,), then the variables xi are bound to vi and e2 is evaluated. Otherwise, y is
bound to the result of evaluating el and then e3 is evaluated. Evaluation of c(e I,.- , e,,) proceeds
by evaluating each ei, say to vi, and then constructing the value c(vl,..., vnJ. Arithmetic
expressions e1 arithop e2 are evaluated by first evaluating e and then e2, and then combining
the results using arithop. A conditional statement if z relop y then eI else e2 is evaluated by
first evaluating z and y, applying relop to the results, and then appropriately branching to either
eI or e2. If the evaluation of an arithmetic operation causes an exception, then the computation
is aborted. We shall write E I- e -- v if e evaluates to v in the context of environment E. If E
is the empty environment 3 then we omit it, and just write I- e -* v.

In [61, we gave a set based semantics for the data-constructor subset of the above language.
This was achieved by replacing the use of environments in the (exact) operation semantics, by
bet environments. A set environment is like an environment except that it maps variables to
sets of values instead of individual values. By this means, we formalized the notion of ignoring
dependencies between variables, and defined the set based approximation sba (eo) of a program
eo (which is a conservative approximation of {v : I- eo - v}4). We then extracted constraints
from a program and presented an algorithm to solve these constraints such that the output of the
algorithm is a representation of the (possibly infinite set) sba(eo). Strictly speaking, the output
of the set constraint algorithm was not sba(eo), but a set of descriptions from which sba(eo)
could be reconstructed. (The algorithm also computes, for each program variable, a set that
conservatively describes all values that the variable can be bound to during program execution.)

We now extend this procedure to the arithmetic component of the language. The key idea is
to generalize the notion of "description" to include arithmetic operations. For example consider
the power program.

let fun power(O, n) = 1
1 power(m, n) = n x power(m-l, n)

in
power(3, 4)

end
Progrm

When our analysis is applied to this program, the following regular tree grammar is output:

P = (4 x P)

This represents the set of expressions {1, 4 x 1, 4 x (4 x 1), 4 x (4 x (4 x 1)),...}, and
indicates that the program returns a value that is obtained by starting with I and repeatedly
multiplying by 4 some arbitrary number of times.

3Tha is. its domain is the empty set of vaiables.
'This set is either empty or a singleton set.
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We begin by describing the set constraints we shall employ. The calculus described here
is an extension of the calculus described in [61, which in turn is based on the earlier works
[8, 12, 15]. The form and meaning of the constraints is defined in the context of some given
closed term eo. We assume a fixed infinite class of set variables; set variables shall be denoted
W, X, Y, Z. We distinguish two special disjoint subclasses of set variables. First, for each
program variable x in eo, there is a distinct set variable X, which shall be used to capture all
of the values for the program variable x. Second, for each abstraction \x.e appearing in e0 ,
there is a distinct set variable ran(Az.e), the "range" of Ax.e, which shall be used to capture
all of the values returned by applications of Az.e during execution. Now, in the context of
the given term eo, we define that a set expression (se) is either a set variable, an abstraction
Ax.e that appears in eo, an integer, or of one of the forms sel arithop Me2 , c(se, ... .,Se2),

apply(seI, Me2), cast(sel, c(X,... , Xn) =:. se2, Y =;' Se3) or ifnonempty(seI, Se 2 ). The first
form is used to model arithmetic expressions, and is the main change from [6]. The second form
models expressions c(e 1,... , en), the third models application, the fourth is for case statements,
and the last is used to reason about emptiness. A set constraint is an expression of the form
X D se, and a conjunction C of set constraints is a finite collection of set constraints.

We now outline the meaning of set constraints. Define that a set constraint value (sc-value)
is either an abstraction Ax.e that appears in eo, an integer i, or of the form c(u 1 ,.. u) or
uI arithopu 2 where each ui is an sc-value, in essence, sc-values are description of values. These
descriptions differ from values in two respects: (i) the descriptions contain arithmetic operations,
and (ii) the descriptions omit the environment component of closures5 . Set expressions are
interpreted as sets of these descriptions of values. Specifically, an interpretation is a mapping
from each set variable into a set of sc-values. Such an interpretation is extended to map set
expressions to sets of sc-values. The rules for this interpretation are essentially identical to those
in [6]. Two new rules are needed for the new kinds of set expressions:

"* I(i) = {i}, where i is an integer, and

"* I(sel arithop se2)) = {ul arithop u2 : ul E 71(sel) A U2 E I(se2)}.

The complete definition is given in Appendix I. It is easy to verify a model intersection property
for the set constraints used in this paper, and it follows that a conjunction C of constraints
possesses a least model, denoted lm(C), where models are ordered as follows: It 2 12
if I, (X) 2 1 2 (X), for all set variables X. For example the least model of the constraint
X D (4xX) U I maps the set variable X into the set of values {l, 4x 1, 4x(4x 1), 4x
(4 x. (4 x 1)),...} (which is same as the language generated by the grammar given earlier in
this section).

We now outline how set constraints are constructed for a program. Since this construction

is an extension of that given in [6], we shall only discuss the additional rules required (these
correspond to the arithmetic expressions of the language). The following is a slightly simplified
version of the new rules (the complete set of rules appears in Appendix HI). The judgements 6

5 lmpotanly, these can be reconstructed from the output of the set constraint algorithm.
6Strictly speaking, the judgements used in Appendix I1 have a slightly more complex form: 2, e C> (X, C). The additional

set variable Z is used to mason about non-emptiness. In effect, it defers the actions of a function until it is determined that the
function may be called.
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of this system have the form e I> (X, C) where e is a term, X is a program variable and C is a
collection of set constraints.

It> (i, {}) (INTEGER)

e t> ( X,, ) e2 t> (X 2,C2) A M I P
eI arithop e2 I> (Y, {Y D_ X, arithop X 2 } U C, U C2 )

el t> (AXI, C1) e2 t> (A2, C2)
ifxI relop X2 then eI else e2 t> (Y, {Y 2 X1 U ,' 2 } U C1 U C2 )

Note that the rule for conditional statements merely joins together the results from the two

branches of the conditional statement. In other words, information about the "test" part of the
statement is ignored. Clearly this loss of information is unacceptable; we address this issue in

the next section. Let SC(eo) denote the pair (X,C) constructed for a term eo according to the

constraint construction procedure (C is the collection of constraints constructed for eo, and ,X

is effectively a pointer into the constraints that indicates which set variable captures the set of
values corresponding to eo).

Meanwhile, we describe the changes to the set constraint algorithm of [61 that are needed
to deal with the new constraints. In effect the algorithm is extended so that set expressions

of the form sel arithop se2 are treated in an identical manner to set expressions of the form
c(sel,... ,se 2 ). That is, arithmetic operations are treated like data-constructors. The only

difference is that we have no de-construction operation for arithmetic operations - we can build

them up, but we can't break them down. Formally, this is achieved by adapting the definition
of atomic set expressions to include expressions of the form ael arithop ae2 where ael and

ae2 are atomic set expressions. With this change of definition, the set constraint simplification
algorithm of [6] can be directly applied. When input with a collection of constraints C, this

O(n 3 ) algorithm computes an explicit representation of the least model of the constraint C. This

representation takes the form of a regular tree grammar.

We now formalize the connection between the descriptions of values computed by the set
constraint algorithm and the values of the operational semantics. Define a meaning function,

which maps an arbitrary sc-value into an sc-value that does not contain arithmetic operations, as

follows:

fAx.e if u is Ax.e

[uJ= i if u is i

Ic([uI,..., [u,) if uisc(ul,...,u,,)
Jul] arithop [U21 if u is uI arithop U2, [u,[ and [u2[ are both integers

In the last line of the definition, [u II arithop [U21 denotes the result of applying the arithmetic
operation to the.integers [uIlI and [u21. For example, [(3 + 4) - 11 is 6. Finally, given a set S
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of sc-values. define that [Sj is {[u]: a E S A [ul is defined}.

Next, we extend the operator Ilvil on values v (defined in [61), whose purpose is to ignore
the environment part of closures:

{ Ax.e if v is (E, Ax.e)
tvII, i if v is i

c(tl~ll,..-, IIv~I) if v is C(V,,... 'V,,)

Finally, we can state the correspondence between the set constraints constructed from a program
and the operational behaviour of the program:

Theorem I Let eo be a closed term, let SC (eo) be (X, C) and let Tim, = lm (C).
Then {lIvII :1 - eo V} vC_ [Im(X)J.

The correctness of the analysis procedure described in this section follows from the above
theorem and the correctness of the set constraint simplification algorithm presented in [6]. Note
that complexity of the whole analysis process (constructing set constraints from a program and
then solving them) is O(n 3 ) where n is the size of the input program. This is because the
translation of a program into its set constraints is O(n) in the size of the program and the set
constraint algorithm is an O(n 3) algorithm.

3 Conditional Statements

In the previous section, we outlined a basic analysis for a call-by-value functional language
involving arithmetic. A limitation of this analysis was that it ignored information in the tests of
conditional statments. To see the specific ways where the treatment of conditional statements
loses information, consider the statement ifxl relop X2 then el else e2. Now, if the test
x, relop X2 always succeeds or always fails, then the analysis will infer inferior information
because it unnecessarily joins together the values obtained from both e and e2. In contrast,
the analysis of a case statement case(eI,c(xI,.... z,) ,n e2,y# e3) ignores the values from
the e2 and e3 until they are activated (i.e. until it is determined that e may contain values that
necessitate that the particular arm be executed). This is modeled by the case set expression.
Unfortunately, it is difficult to treat conditional statements in an analogous manner. This is
because the set constraints reason about descriptions of arithmetic computations, and from these
descriptions there is no simple way to determine whether a branch will be taken. (The key point
is that this test must potentially be done at each step of the algorithm; it is therefore imperative
for efficiency that it be a local test. Note that for case statements, the corresponding test - also
potentially done at each step - is a trivial constant time test.) This is a direct reflection of the
difference between the simple structural equality of data-constructors, and the more complex
equality of arithmetic.

However, there is a much more significant loss of information than the issue of "dead"
branches in conditional statements. Consider the statement if x > y then eI else e2 , and for
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simplicity, suppose that the only free variables in el and e2 are x and y. Now, inside expression
e I it will always be the case that x > y and inside e2 it will be the case that x < y. In other words,
the conditional statement serves to restrict the possible bindings to variables in the scope of its
body. From an analysis perspective, it is therefore useful to think of conditional statements as a
form of variable binding mechanism. More concretely, suppose that the conditional statement
is to be executed in environment p and let e'1 and e' be the result of renaming x and y into new
variables z' and y' in el and e2. Then, at an informal level, the evaluation of el and e2 can be
viewed as proceeding in the following environments:

environment for e I environment for e2

y' p([< ](y)) y' p([:5 Y]()

where [> y](x) denotes the value of x if x > y and is undefined otherwise, [< x](y) denotes
the value of y if y < x and is undefined otherwise, and similarly for [_< yj(x) and [> x](y).
More generally, define an expression [relop y](x) which, in the context of some environment p,
denotes p(x) if p(x ) relop p(y) and is undefined otherwise.

Such a view of conditional statements could be formalized to give an alternative operational
semantics that emphasizes the latent binding effects of conditional statements. Rather than
sp,:ll out the details of this, we shall instead focus on how these intuitions can be employed in
analysis. In effect, we shall treat expressions such as [> y]( x) in much the same way as we treat
expressions such as 1 + 3. As before, we shall construct set constraints from a program that shall
reason about descriptions of values (rather than the actual values), but now these descriptions
shall involve expressions of the form [relop u I](u 2) in addition to u I arithop U2.

To this end, we first introduce a new kind of set expression which has the form [ relop seil (se 2).
We shall also extend the definition of sc-value to include expressions of the form [relop u I] (u2 ).
The new form of set expression shall be interpreted as follows:

I([relop sel](se2)) = {[relop ui](u2) : Ul E "(sel) A U2 E I(se2)}.

Accordingly, the definition of the function [J, which maps an arbitrary sc-values into its meaning,
is extended as follows: [[rPIlop uII(u2)] = u2 if u2 relop u and is undefined otherwise.

Finally, the construction of constraints is modified so that when an expression of the form
ifxr relop y then el else e2 is encountered, occurrences of z and y in el and e2 are treated
specially:

* when x is encountered in eI, the set expression [relopXv](Xx) is generated instead of X'¥;

* when y is encountered in ei, the set expression [op(relop)X=](X,) is generated instead of

* when x is encountered in e2, the set expression [neg(relop)Xj](X.) is generated instead

7



of X,, and

* when x is encountered in e2, the set expression [op(neg( rlop)),r](X,,) is generated
instead of X,.

where op maps a relational operator into its opposite (for example op( <) is >), and neg maps
a relational operator into its negation (for example neg(<) is >). Strictly speaking, we shall
cascade this process, so that at the occurrence of x in the expression x + I of the conditional
statement

ifx• > y then if x < z then x + 1 else I else 2

the set expression [< X]([> 1'](X')) is generated.

We conclude this section with an example illustrating the kinds of output generated by this
modification to the analysis. Consider the following ML program for adding up the elements
in an array. The functions update, sub and length are the update, subscript and array length
operations; the expression array(10, 3) creates an array of size 10 with each element initialized
to 3 (the valid subscripts of the array are 0..9).

let fun cum (arr: int array) =
let fun f i = if (i =0) then arr sub 0

else (arr sub i) + f(i - 1)
in

f ((length arr) - 1)
end

in
cum (array(1O, 3))

end
Program 2

Of particular interest is the set of values for i. If we can determine that i is always in the
range 0..9 then the array bounds check can be eliminated during the subscript operation. When
applied to program 2, the analysis described in this section outputs the following tree grammar
corresponding to the program variable i, where I is the set variable corresponding to i:

=:* 10- 1
I =, ([# 0](I)) - I

That is, the set of values obtained for i is the set consisting of the integer 9 as well as any integer
obtained by subtracting 1 from any non-zero integer described by 1. It is easy to verify7 from
this description that the possible values for i must lie in the range 0..9, and so the array bounds
check is not required.

7In general, some postprocessing is needed to obtain the required properties from the descriptions output by the analyzer. We
address this issue further in the Section 5.
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For the purposes of comparison, we now outline how the abstract interpretation approach
based on the domain of intervals with widening and narrowing would perform on this example.
The abstract values of the interval domain take the form [x, y], [x, oo], [-0c, y] or [-oo, 00],
where x and y are integers. An interval [x, y] indicates the set of all integers i such that x < i < y.
(See [3] for further details.) We now trace out the behaviour of the analysis and focus on the
values obtained for the program variable i. The first value for i is 9, and this is represented by the
interval [9,9]. During the next iteration, a new value 8 is obtained by i, and this is represented by
the interval [8,8]. When these two intervals are combined using the widening operator typically
employed for this domains the result obtained is [-oo, 9]. This completes the widening phase of
the analysis (at least as far as i is concerned). Next, the narrowing phase of the analysis begins.
However, for this program, it is not possible to obtain a tighter bound on i using narrowing, and
so the final result is [-oo, 9], which does not imply that the array bounds check can be removed.
Observe that if the test in the conditional statement were changed to x < 0 instead of x = 0,
then the abstract interpretation approach would obtain the description [0, 9] for i.

4 Examples

We now consider two more substantial examples to illustrate the kinds of information that our
analysis can obtain. The first example is a small package (about 100 lines) that implements
two-dimensional arrays using the one-dimensional arrays of SML of New Jersey. The package
provides subscript and update operations, as wall as a matrix multiplication operation. This
package was analyzed in the context of a benchmark that multiplies two 100 x 100 matrices.
The time for analysis was approximately 0.06s 9. Of particular interest are the manual bounds
check operations for each dimension of the two-dimensional arrays. A typical example of the
results obtained by the analysis for an index involved in bounds checking, is given by the set
variable X in the following regular tree grammar:

X [< 1001(y)
Y = ([< 100](Y)) + I
Yz 0

Focus first on the set variable Y. The values described by Y consist of the integer 1 and any
value obtained by adding I to some value in Y that is strictly less than 100. If is easy to see that
the values described by 3Y are exactly the interval 0..100. If follows that the set described by
X is the interval 0..99, and therefore the bounds checks can be eliminated. In fact the analysis
determines that all of the two-dimensional bounds checks can be eliminated for this program.
This resulted in an approximately 40% speedup in the benchmark.

The second example is the core part of the set based analysis implementation (approximately
2700 lines). It relies less heavily on array operations, although it does contain substantial
symbolic and imperative aspects. It also make significant use of higher-order functions: in

aln general, widening is needed to obtain a terminating abstract interpretation analysis using the interval domain.
9All execution times reported in this section are in seconds on an PMAX 5000/200 with 64M and running Mach. The analysis

is implemented in Standard ML of New Jersey (2], Version 0.93.

9



particular functions are stored in lists, data-structures and arrays and then recovered and called
when necessary. An important part of the design of the system is the use of integers to
provide a compact and efficient representation of certain objects call terms. The class of terms
is partitioned into identifiers and compound-terms. Negative integers are used for identifiers
and positive integers are used for compound-terms. Both identifiers and compound-terms are
allocated using global references that contain the respective next integers to be allocated. Finally,
both kinds of terms are used to index into arrays. The following is suggestive of the allocation
mechanism for compound-terms.

val last-compound-term =.

val next-compound-term = ref 1
fun new-compound-term 0 =

let val i = !next-compound-term in
next-compound -term:= i + 1;
i

end

where .... indicates the computation of the maximum size of integers used for compound-terms
(it is computed from some parameter describing the problem size). Any arrays indexed by
compound-terms are created with size last-compoundcterm + 1. There is a similar mechanism
for the allocation of identifiers, except that identifiers are allocated in the opposite direction,
starting from - 1. These term objects appear in almost all parts of the program, are stored in
arrays and data-structures and also appear in the closures of higher-order functions.

The analysis of this second example was performed in about 7.6s. The results of the analysis
for variables that range over term objects are typically of the following form (the set variable X'
describes the possible values of the program variable of interest).

X -. [-((20000/3)+ 1)](Y)
X * [> ((20000/3) + I)](Z)

Y => -1
Y =,[ -((2000o/3) + 1)](Y) - I

Z =* [0 ((20000/3) + 1)](Z) + 1
z•0

Note that the expression (20000/3) + 1 corresponds to the initial computation to determine
the bounds on the allocation of identifiers and compound-terms. The above description clearly
reflects the allocation of compound-terms (starting from I and incrementing) and the allocation
of identifiers (starting from - 1 and decrementing). The possible value of 0 is used to represent
an uninitialized term and is used in a part of the program at which a variable must be defined
before it can be given its proper value.

Most importantly, the descriptions for the variables that are used for subscripting into arrays
have one of the following two forms: [> 0](X) or -[< 0J(X-). In either case, the description

10



establishes that the array operation can be done without bounds checking. Preliminary results
indicate that when these array operations are done without array bounds checking, overall
performance of the analyzer improves by about 6% - 13%, depending on the program analyzed.

5 Conclusion

We have presented an extension to set based analysis for the treatment of arithmetic expressions
in an ML-like language. The analysis yields revealing descriptions of how arithmetic values are
obtained during the execution of a program. We have investigated the use of this information
to remove array bounds checks for two different styles of programs. Preliminary data suggests
that the approach presented here will scale up to large programs.

We observe that the information computed by the analysis described by this paper is not
explicit in the sense that properties cannot be directly read from it. Rather, some post-processing
is required. In practice, the information that is relevant to a particular program variable is
usually quite small and fairly easy to reason about, even for moderate sized programs. In
general, however, it may involve complex rbcurrence relations1 °. One area of future work is the
development of tools to reason about the output of the analyzer.

Although the use of a somewhat implicit representation of values is a disadvantage in the
sense that postprocessing is required, it is also an advantage because it means that we can
compute a much richer variety of properties that is possible in other approaches (for example, in
abstract interpretation, we fix in advance an explicit representation used in the analysis, but in the
process we restrict the properties that can be inferred). In effect, our approach defers the choice
of "interesting properties" until the post-processing stage. This leads to an important level of
modularity, since when we wish to analyze for a new property, we typically only need to construct
a new postprocessing stage. For example, suppose that for alignment purposes, we wished to
determine whether a byte array was always created with a size that was a multiple of 4. Such
information could be determined from the output of our analysis by adapting the postprocessing
stage for the property of interest. In comparison, consider an abstract interpretation analysis
based on intervals (such as used in the example at the end of Section 3). In order to modify the
abstract interpretation analysis for this new property, we would need to completely redesign the
analysis to appropriately enrich the abstract domain.

Future Work

Much work remains in the use of the analysis during compilation. The results relating to array
reported in Section 4 are very preliminary. Further applications involving data representation,

1l1n some sense, the approach outlined in this paper can be viewed as a technique for decomposing the large problem of reasoning
about the arithmetic operations of an entire program (which contains other aspects such as higher order functions, continuations and
data-stnuctures) into a number of smaller "locaw" arithmetic problems. Since these problems are typically much smaller than the
original problem, and are often important for optimization purposes, we may wish to use more expensive analysis procedures on
these subproblems than we could justify for analysis of the entire program.

I1



binding time analysis and flat types [13] are being investigated. The approach of computing
descriptions of how a value is obtained also seems relevant to other kinds of complex values
such as strings, sets and Lisp futures.
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Appendix I : Interpretation of Set Expressions

I. 1(i) = {i};

2. I(sej arithop se2)) = {vl arithop v2 vi E Z(se1 ) A vi E I(sei )};

3. 1"(c(sej,... ,se,)) = {c(vl, .... ,v)" vi E I(sei),i = I..n};

4. I.(Az.e) = {Ax.e};

5. I(ifnonempty(sel,se2)) = if I(sel) = {} then {} else T(se2);

6. 2(apply(se,,se2)) = {v: Ax.e E "(se,) A "(se2) # {} A v E I(ran(Ax.e))
provided Ax.e E "(se I ) implies 1(se2) C (X•Y,)

7. T(case(sei,c(Xi,...,,Y) =* se2 ,Y = qe3 )) = S , U $2,
where (i) Si.= {v: vE I(se 2) A 3c(v!,.... v,) EI(sel)}

(ii) S2 = {v v E I(se3) A 3v' E I(sel) s.t. v' $ c(v-,..., v,)}
(iii) c(v, ... ,vv) E I(se1) implies vi E T(Xi), i = I..n
(iv) v E I(sel) A V 0 c(v11 .... -v) impliesc'(v, .... ,v,) E "(Y)

Note that the above interpretation of set expressions is somewhat unusual, because in parts 4 and
5 of the definition, the set expressions themselves impose restrictions on I. If these conditions
are not met, then the interpretation of the expression is undefined.
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Appendix II: Construction of Set Constraints

z F C > (X,•, {}) (VAR)

Z & •t (i, {}) (INT)

X• ,- e t> (X, C)
Z I- A•z.e t> (Y, {y D Ax.e, ran(Ax.e) ;? X} U C) (ABS)

Z F- el t> (X,, Cl) Z F- e2 t> (X2 , Cz)

Z - eI e2 t> (y, {y D apply(Y',X 2 ), Y' D ifnonempty(Z,,i )}U C U C2 )

Z - ei t> (X,,Ci), i = L..n

SF-- c(ei,... ,en) I> (y3, {Y ; c(X,,... ,X )} U C, U... u C") (CONST)

z F- e1 II>(XI,CI) Z F- e2 t> (X 2 , C2 )

Z F- ei arithop e2 C> (Y, {y D , V a-rithop X2} U C1 U C2) (ARrHOP)

Z F el t> (Xi, ,C) z F- e2 L> (X 2 , C 2 ) Z I-. e 3 t> (A''3. C3 ) (CASE)

Z F case(el,c(xl..., X,) e2 Y==.e 3) I> (Y. CUC, U.C2 U C3 ).

whereC = {y 2 case(Y',c(,'V,,,... ,yxn) = -:,,v* =: Z3), Y' D ifnonempty(Z.,V1)}

Z F- el I>  ( XI, C I) Z F" e2 I> (,1'2, C2 )

Z F ifx1 relop x2 then e Ielse e2 t> (Y, {Y .X, UX 2 } UC UC) F2)

2 F et>(X,C) (X, C)(FIX)
Z - fix x.e t> (X., {X _ifnonempty(Z,X)}UC)

Figure 1: Construction of Set Constraints

Figure 1 presents the complete details of the constructions of set constraints for a term. The
judgement Z F- e I> (se,C) recursively passes down a set variable which is empty if the
expression under consideration is never called, aid is non-empty otherwise. A key property of
the judgement Z F- e t> (se, C) is that if Z is empty then C is vacuously true. We now define
SC(eo) as follows: if Z is a new set variable and Z F- e I> (X,C), then SC(eo) is the pair
(X, {Z _ u} UC) where u is some arbitrary sc-value. Note that all sc-values are set expressions
and that the choice of u is arbitrary - its only purpose is to force the variable Z to be nonempty,
since otherwise the constraints C would be vacuously true.
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